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We study pseudo-optimal solutions to multi-objective optimization problems by introducing par-
tial minima defined as follows. Point x k-dominates x

′ when at least k of the coordinates of x

are smaller than the corresponding coordinates of x
′. A point not k-dominated by any other point

in the set is a k-minimum or a partial minimum, generalizing the global minimum. We study
statistical properties of partial minima for a set of N points independently distributed inside the
d-dimensional unit hypercube using exact probabilistic methods and heuristic scaling techniques.
The average number of partial minima, A, decays algebraically with the total number of points,
A ∼ N−(d−k)/k, when 1 ≤ k < d. Interestingly, there are k − 1 distinct scaling laws characterizing
the largest coordinates: the distribution P (yj) of the jth largest coordinate, yj , decays algebraically,
P (yj) ∼ (yj)−αj−1, with αj = j d−k

k−j
for 1 ≤ j ≤ k−1. The average number of partial minima grows

logarithmically, A '
1

(d−1)!
(ln N)d−1, when k = d. The full distribution of the number of minima is

obtained in closed form in two-dimensions.

PACS numbers: 02.50.Cw, 05.40.-a, 89.20.Ff, 89.75.Da

A host of decisions in computer science, economics,
politics, and everyday life involve multiple criteria or mul-
tiple objectives [1–4]. A pedestrian choosing a walking
path considers the distance, the number of turns, and
the number of traffic lights. In business, takeover bids
are decided on a multitude of complex conditions in ad-
dition to the total monetary offer. In elections, voters
examine how candidates stand on multiple issues.

In multi-objective optimization, a solution that is op-
timal with respect to all criteria is rarely possible and
instead, one faces a set of choices that are suboptimal
on at least one criterion. Decisions require algorithms
to weed out clearly inferior choices, sort through all the
remaining imperfect choices, and evaluate the relative
trade-offs between costs.

Since in multi-objective optimization, a global opti-
mum is unlikely, we are interested in identifying points
that are close to optimum. In this paper, we propose
a pseudo-optimality criterion, and derive the likelihood
of finding pseudo-optimal solutions as a function of the
number of choices.

By definition, a global optimum is superior in all
cost dimensions. Intuitively, one may define a pseudo-
optimum as superior to all alternatives along a large num-
ber of cost dimensions. For example in a three-cost sce-
nario, there may not be any choice that is optimal with
respect to all three costs, but we may be able to find
choices that are better than any alternative along two
costs, see Figure 1. In a voting scenario, no candidate
may have the most attractive position on all issues to a
given voter. In this case, a voter might naturally restrict
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FIG. 1: Illustration of partial domination and partial minima.
There are three costs associated with A, B, and C. A and C
dominate B on one cost and thus, B is not a 1-minimum.
Neither A nor C dominate B on two costs and thus, B is a
2-minimum.

her attention to a candidate, or candidates, who have the
most attractive position on as many issues as possible.

Let us represent our choices as N points in d-
dimensions with coordinates x ≡ (x1, x2, . . . , xd). Each
coordinate xi > 0 represents a distinct cost. By con-
vention, small-x values are superior and are considered
dominant. Partial minima, a formalization of the pseudo-
optima concept discussed above, are defined as follows.
A point x is said to be k-dominated by x′ when at least
k of the coordinates of x are larger then the correspond-
ing coordinates of x′. A point is said to be a partial
minimum, or formally a k-minimum, when it is not k-
dominated by any other point in the set as illustrated
in Figure 1. We stress that a partial minimum is not
required to dominate all other points on the same d − k
coordinates and may dominate different points along dif-
ferent coordinates. The parameter 1 ≤ k ≤ d quantifies
the quality of the partial minimum: a smaller k value
represents a more stringent condition. The two extremes
are the global minimum, k = 1, where every coordinate is
a minimum of the point set, and the efficient set, k = d,
that includes all points that are not obviously dominated
by other points as shown later in Figure 3. Partial min-
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ima are conditional multivariate extrema and their prop-
erties are amenable to analysis using a statistical physics
perspective [5–9].

In this study, we obtain exact statistical properties of
partial minima including the multivariate density and its
asymptotic behavior as well as scaling properties such
as the typical size and average number of minima. We
present two major results. First, as a function of the
set size N , the average number of minima decays alge-
braically when 1 ≤ k < d, and grows logarithmically
when k = d. Second, there are k − 1 different scaling
laws for the largest coordinates, each following a power-
law distribution with k−1 distinct exponents. The rest of
the d+1−k coordinates are characterized by distributions
with sharp tails. We also discuss the relevance of these
results to the multi-objective shortest path on graphs, a
central problem in multi-objective optimization.

We consider the situation where there are no correla-
tions between the coordinates. That is, each coordinate
is independently drawn from some distribution. As dis-
cussed below, this situation is equivalent to a uniform dis-
tribution in the unit hypercube. Thus, we conveniently
assume that xi is uniformly distributed in [0 : 1] for all
1 ≤ i ≤ d.
Heuristic Arguments. Elementary scaling laws for the
typical size of a partial minimum and the average num-
ber of minima are derived heuristically. We assume that
(i) the partial minimum is dominant on a fixed set of k
coordinates, and (ii) all its coordinates are equal, xi = x,
for all i. By the partial minimum definition, the cor-
responding k-dimensional hypercube contains only the
partial minimum itself. The volume of this hypercube is
xk and the expected number of points inside this hyper-
cube must be of order one, Nxk ∼ 1. Consequently, the
typical size x decays algebraically with N ,

x ∼ N− 1
k . (1)

This characteristic scale decreases as the minimum con-
dition becomes more stringent, that is, as k decreases.

The expected number of partial minima

A ∼ N− d−k
k (2)

follows from the expected number of points inside the
d-dimensional hypercube with linear dimension x, Nxd.
Partial minima are asymptotically rare and the scale (1)
decays indefinitely. Furthermore, with a small prob-
ability, there is only one minimum when N is large.
The scaling estimate (2) coincides with the exact value
A = N−(d−1) for k = 1, since any point is a global mini-
mum with probability N−d. For k = d, the minimum in
any one coordinate is a partial minimum and thus, there
is at least one partial minimum. Indeed, the decay expo-
nent d−k

k in (2) vanishes. This special case is discussed
separately.
The Density of Minima. The density Pd,k(x) of k-
minima located at x is obtained analytically through a

FIG. 2: Illustration of the excluded area for a global minimum
(k = 1, left) and points on the efficient set (k = 2, right) in
two-dimensions. Points in the gray region k-dominate the
distinguished point.

formal generalization of the heuristic argument above.
For example, in two dimensions the density is

P2,k(x1, x2) =

{

N [1 − (x1 + x2 − x1x2)]
N−1

k = 1,

N [1 − x1x2]
N−1

k = 2.

The factor N is the number of ways to choose the min-
imum, and the second factor guarantees that the rest
of the points do not dominate the minimum at (x1, x2).
These points must not fall inside an L-shaped region of
area x1 + x2 − x1x2 or equivalently 1 − (1 − x1)(1 − x2)
when k = 1 or a rectangle of area x1x2 when k = 2 as
illustrated in Figure 2.

In general, the density of minima

Pd,k(x) = N [1 − Gd,k(x)]N−1. (3)

reflects that the N − 1 points are excluded from a d-
dimensional region of volume Gd,k(x). The excluded vol-
ume obeys the recursion

Gd,k(x) = xd Gd−1,k−1(x) + (1 − xd)Gd−1,k(x). (4)

In our notation, the dimensional index of a function dic-
tates the dimension of its vectorial argument so the vec-
tors on the right hand side of (4) have d−1 components.
We obtain the recursion relation (4) by separating the
excluded region into two regions: one in which the dth
coordinate is dominant and one in which it is not. Using
the boundary conditions Gd,0 = 1 and Gd,k = 0 when
k > d, we recover G1,1 = x1 and G2,1 = x1 + x2 − x1x2.
Furthermore,

G3,k =











1 − (1 − x1)(1 − x2)(1 − x3) k = 1,

x1x2+x1x3+x2x3−2x1x2x3 k = 2,

x1x2x3 k = 3.

In general, Gd,d =
∏d

i=1 xi and Gd,1 = 1−∏d
i=1(1− xi).

Scaling. In the limit N → ∞, the product term x1x2

in P2,1 = N [1 − (x1 + x2 − x1x2)]
N−1 is negligible com-

pared with the linear term x1 + x2 and thus,

P2,1(x1, x2) → Ne−N(x1+x2).

Generally, only the kth degree terms are asymptotically
relevant and the leading behavior is

Pd,k(x) → Ne−NFd,k(x). (5)
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The auxiliary function Fd,k(x) contains
(

d
k

)

terms, each
a distinct product of degree k. For example,

F3,k =











x1 + x2 + x3 k = 1,

x1x2 + x1x3 + x2x3 k = 2,

x1x2x3 k = 3.

The auxiliary function equals the sum, Fd,1 =
∑d

i=1 xi,

and the product, Fd,d =
∏d

i=1 xi, in the two extremes.
The function Fd,k(x) is defined recursively

Fd,k(x) = xdFd−1,k−1(x) + Fd−1,k(x) (6)

for 1 ≤ k ≤ d with the boundary condition F0,k = δk,0.
This recursion follows from (4) by dropping the higher-
degree term xd Gd−1,k(x).

The asymptotic behavior (5) can be recast in the scal-
ing form

Pd,k(x) → NΦd,k(z), (7)

as N → ∞. The scaling variable is z = xN 1/k, in accord
with (1), and the scaling function is

Φd,k(z) = e−Fd,k(z). (8)

The average number of k-minima equals the in-
tegral of the density, Ad,k =

∫

dxPd,k(x), where
∫

dx ≡ ∏d
i=1

∫ 1

0
dxi [10]. When k < d, the asymptotic

behavior of the average follows from the scaling form (7),

Ad,k ' ad,k N− d−k
k , and is in agreement with (2). The

proportionality constant ad,k equals the integral of the
scaling function, ad,k =

∫

dzΦd,k(z), although now, the

integration range is unrestricted,
∫

dz ≡ ∏d
i=1

∫∞

0
dzi.

The prefactor is trivial for perfect minima, ad,1 = 1, and
otherwise, it can be obtained analytically only in a few
exceptional cases.

Extreme Statistics. Since global minima are con-
strained along all cost coordinates, extremely large costs
are exponentially rare, whenever such a global minimum
exists. Because we have relaxed the minimality condi-
tion, this may not necessarily be the case for partial min-
ima. In our voting example, a candidate who is attrac-
tive to a voter on a multitude of issues may be extremely
unattractive on a particular one. How likely is such a
scenario?

We begin our study of extremal statistics [11–13] by
first considering the distribution of the largest coordinate
in a partial minimum. Without loss of generality, we
order the coordinates x1 < x2 < · · · < xd−1 < xd. Our
focus is on the tail of the distribution of the variable xd,
corresponding to the regime xd À xd−1. We also restrict
our attention to the limit N → ∞. The distribution
Q1(xd) of the largest coordinate xd equals the integral of
the multivariate distribution with respect to the rest of

the coordinates,

Q1(xd) =

∫

dx1 · · ·
∫

dxd−1 Pd,k(x1, x2, · · · , xd)

∼
∫

dx1 · · ·
∫

dxd−1 Ne−NFd,k(x)

∼
∫

dx1 · · ·
∫

dxd−1 Ne−NxdFd−1,k−1(x)

∼ N− d−k
k−1 (xd)

− d−k
k−1−1. (9)

The second line is obtained by substituting the leading
asymptotic behavior (5) and the third line reflects that
only the first term in (6) is relevant when xd À xi for
all i < d. Our last step is to multiply and divide the
third line by xd and then invoke the scaling law (2) for
the average number of k − 1-minima in d − 1 dimen-
sions. In essence, we utilize the fact that when one of the
coordinates is very large, the partial minima criterion in-
volves one less constraint in one less dimension [14]. The
power-law decay of the distribution (9) shows that there
is a substantial likelihood that xd is relatively large.

The distribution Q2(xd−1) of the second largest coor-
dinate xd−1 is obtained using the bivariate distribution

Q̃(xd−1, xd),

Q̃(xd−1, xd) =

∫

dx1 · · ·
∫

dxd−2 Pd,k(x1, x2, · · · , xd)

∼
∫

dx1 · · ·
∫

dxd−2 Ne−NFd,k(x)

∼
∫

dx1 · · ·
∫

dxd−2 Ne−Nxd−1xdFd−1,k−1(x)

∼ N− d−k
k−2 (xd−1xd)

− d−k
k−2−1. (10)

The distribution Q2(xd−1) equals the integral of the bi-
variate distribution with respect to the largest coordi-

nate, Q2(xd−1) =
∫ 1

xd−1
dxd Q̃(xd−1, xd). This integral is

dominated by the divergence at the lower limit of inte-
gration, and consequently

Q2(xd−1) ∼ N− d−k
k−2 (xd−1)

−2 d−k
k−2−1. (11)

The power-law tail is now steeper.
A similar calculation applies to the distributions of

the k − 1 largest elements. In general, the distribution
Qj(yj) of the jth largest element, yj , with the definition
yj ≡ xd+1−j , decays as a power-law,

Qj(yj) ∼ N− d−k
k−j (yj)

−αj−1 (12)

for 1 ≤ j ≤ k − 1. The decay exponent increases mono-
tonically with the index j,

αj = j
d − k

k − j
. (13)

We can verify the decay law (2) using

A ∼
∫ 1

N−1/k dyj Qj(yj) where the lower limit of integra-
tion is set by the typical size scale (1). Interestingly,
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there are k − 1 distinct scaling behaviors for the k − 1
largest elements. Each of these extremal coordinates is
distributed according to a power-law distribution that is
characterized by a distinct exponent.

This multiscaling behavior affects the behavior of the
moments 〈ym

j 〉 defined as follows, 〈ym
j 〉 = Im/I0, where

Im =
∫ 1

N−1/k dyj ym
j Qj(yj). The integral Im is domi-

nated by the divergence at the lower cutoff when the
order is small, m ≤ αj , but otherwise, the integral Im

is finite. Consequently, the moments have the following
scaling dependences on N

〈ym
j 〉 ∼











N−m/k m < αj ,
1
kN−

j(d−k)
k(k−j) ln N m = αj ,

N−
j(d−k)
k(k−j) m > αj .

(14)

Low order moments exhibit ordinary scaling behavior as
they are characterized by the typical size scale (1) that
underlies the multivariate distribution function (8). As
usual, there is a logarithmic correction at the crossover.
High-order moments plateau at a fixed value that is in-
dependent of the index m, an indication that there is a
significant probability that the extreme elements are of
order one. Interestingly, the average size of the differ-
ent coordinates may follow different scaling laws. For
example, there are two scaling laws, 〈y1〉 ∼ N−1/6 and
〈y2〉 ∼ N−1/3 when d = 4 and k = 3. Of course, the sum
∑d

i=1 xi has the same extremal statistics as does xd.
The crossover moment or equivalently the exponent

αj diverges as k → j. Therefore, the smallest d + 1 − k
coordinates exhibit the ordinary scaling behavior

〈ym
j 〉 ∼ N−m/k (15)

for k ≤ j ≤ d and all moments of the respective distri-
bution functions must be finite. In these cases, the dis-
tribution functions Qj have tails that are as sharp as or
sharper than an exponential. In the aforementioned case
d = 4 and k = 3, the third and the fourth largest coordi-
nates exhibit the ordinary scaling, 〈y3〉 ∼ 〈y4〉 ∼ N−1/3.
Efficient Sets. The set of points that are not domi-
nated on all coordinates by any other point are partial
minima when k = d (Figure 3). We refer to this set as the
“efficient set”. The efficient set, also termed the efficient
frontier or Pareto equilibria, plays a central role in multi-
objective optimization and has been studied extensively
in economics, computer science, operations research, and
game theory [15, 16]. Since there is no objective trade-
off between costs, every point in the efficient set is po-
tentially a solution to the multi-objective optimization
problem. The study of the properties of efficient sets was
the original motivation for our research.

In the special case k = d, the expected size of the
efficient set, Ed(N) ≡ Ad,d(N), obeys the recursion

Ed(N) = Ed(N − 1) +
1

N
Ed−1(N). (16)

The point with the largest xd coordinate certainly does
not dominate any other point. Furthermore, this point

FIG. 3: Illustration of the efficient set in two-dimensions.
Filled squares are on the efficient set and unfilled squares are
not. Only four of the filled squares are on the convex hull.

is on the efficient set if and only if the rest of its d − 1
coordinates are not dominated by any other point. This
event occurs with probability 1

N Ed−1(N) and hence, the
second term in the recursion. We note that the recursion
(16) can also be obtained by performing the integration
over xd in Ed(N) = N

∫

dx [1 − x1x2 · · ·xd]
N−1. This

integration is analytically feasible only if k = 1 or k = d.
The recursion relation (16) is subject to the boundary

condition E1(N) = 1. In two dimensions,

E2(N) = 1 +
1

2
+

1

3
+ · · · + 1

N
, (17)

or alternatively, E2(N) = H(N), where H(N) =
∑N

n=1
1
n

is the harmonic number. The average size of the effi-
cient set grows logarithmically, E2(N) = ln N + γ + · · ·
where γ = 0.57721 is Euler’s constant. In three dimen-

sions, we have E3(N) =
∑N

n=1
1
nH(n), and asymptoti-

cally, E3(N) ' 1
2 (ln N)2. The large-N behavior is ob-

tained in general by converting the difference equation
(16) into a differential equation dEd/dN = Ed−1/N . The
expected size of the efficient set grows logarithmically,

Ed(N) ' 1

(d − 1)!
(ln N)d−1. (18)

This logarithmic growth reflects that the integral of the
scaling function,

∫

dzΦd,d(z), is divergent at the upper
limit. A straightforward generalization of the calculation
above shows that the distribution of the extremal coor-
dinates has a logarithmic correction,

Qj(yj) ∼ (ln N)d+1−j(yj)
−1| ln yj |j−1, (19)

for 1 ≤ j ≤ d − 1. We can verify that the average
number of points is consistent with the exact behavior
∫

N−1/d dy Qj(yj) ∼ (ln N)d−1 as in (18). The crossover
moment vanishes and the moments decay logarithmically,

〈ym
j 〉 ∼ (ln N)−j , (20)

where m > 0 and 1 ≤ j ≤ d − 1.
Two-dimensions. For the case d = 2, we obtain closed
form expressions for the distribution function of partial
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minima. This permits us to establish central limit-type
behaviors for the distribution of the size of the efficient
set.

In two-dimensions, the distribution function pn(N) for
the event that the efficient set includes n points, where
1 ≤ n ≤ N , satisfies the recursion [17]

pn(N) =
(

1 − N−1
)

pn(N − 1) + N−1pn−1(N − 1) (21)

and is subject to the boundary condition Pn(0) = δn,0.
On the square, there are two coordinates: x1 and x2. We
can derive (21) by alluding to the same reasoning behind
(16), i.e., the point with the largest x2 coordinate will
be on the efficient set if and only if its x1 coordinate is
minimal, an event that occurs with probability N−1.

Recursion equations for the average E(N) = 〈n〉
and the variance V (N) = 〈n2〉 − 〈n〉2 with

〈f(n)〉 ≡ ∑N
n=1 f(n)Pn are obtained by summing

(21). The average satisfies E(N) = E(N − 1) + N−1

in accord with (16) and the variance satisfies
V (N) = V (N − 1) + N−1 − N−2. Thus, the vari-
ance equals the difference between the first and the
second harmonic numbers

V (N) = H(N) − H(2)(N) (22)

where H(2)(N) =
∑N

n=1 n−2. The variance and the
average have identical leading asymptotic behaviors,
V (N) = ln N + (γ − 1

6π2) + · · · .
With the transformation pn(N) = 1

N ! p̃n(N), the aux-
iliary function p̃n(N) satisfies the recursion

p̃n(N) = (N − 1)p̃n(N − 1) + p̃n(N − 1) (23)

with p̃n(0) = δn,0. This recursion defines the Stirling

numbers
[

N
n

]

[18] so p̃n(N) =
[

N
n

]

. Therefore, the full
probability distribution is expressed in closed form,

pn(N) =
1

N !

[

N

n

]

(24)

for 0 ≤ n ≤ N .
The general asymptotic behavior, derived in [19],

pn(N) ' 1

N

1

Γ(n/ ln N)

(ln N)n

n!
(25)

applies in the limit n → ∞ N → ∞ with the ratio n/ ln N
finite. For small n ¿ ln N , the distribution is Poissonian,
Pn(N) = N−1(ln N)n−1/(n−1)! and for large n, the dis-
tribution approaches a Gaussian centered at the average
E(N) ' ln N with the variance V (N) ' ln N ,

pn(N) → 1√
2π ln N

exp

[

− (n − lnN)2

2 ln N

]

. (26)

We note that the convex hull, a subset of the efficient
set (see Figure 3), is characterized by similar statistical
properties including a limiting Gaussian distribution and

logarithmic growths, albeit with different prefactors, of
the average and the variance [20–22].

Multi-Objective Shortest Path. The multi-objective
shortest path on a graph is defined as follows. Consider
a graph, possibly with multiple edges connecting pairs
of nodes, with d different costs on each edge. Fix the
source and the destination nodes, and then consider all
paths from source to destination, assigning d total costs
to each path computed as the sum of the d individual
costs of the path’s constituent edges. The multi-objective
shortest path problem consists of finding the efficient set
of paths. Generally, finding the efficient set is an NP-
hard problem, although less demanding approximation
schemes exist [23, 24]. Nevertheless, the computation
time of the approximation scheme depends crucially on
the size of the efficient set.

Suppose the edge costs are independent, random draws
from a common distribution. We can consider two lim-
iting topologies. First, for a graph of two nodes con-
nected by N edges, the number of elements in the ef-
ficient set grows poly-logarithmically in the number of
edges as shown in (18). Second, for a one-dimensional
chain of nodes where each pair of neighboring nodes is
connected by a pair of edges, the total path costs become
correlated [23], even though the individual edge costs are
not. We have conducted numerical studies that find that
the size of the efficient set is highly sensitive to the distri-
bution of edge costs. Assuming each edge has two costs,
(w1, w2), both chosen from some continuous distribution,
the convex hull grows linearly in the length of the chain.
Interestingly, we observed various behaviors for the size
of the efficient set, ranging from linear in the length of
the chain, to power law behavior, characterized by ex-
ponents greater than unity, up to stretched exponential
behavior.

Finally, we consider Erdös-Renyi random graphs [25–
27]. Using the fact that the shortest path between two
randomly chosen nodes grows logarithmically with the
total number of nodes in the graph and the fact that
paths that are close in length to the shortest path weakly
overlap and hence their costs are weakly correlated, the
results in this paper can be used to heuristically show
[28] that the size of the efficient set of paths grows poly-
logarithmically with the number of nodes as in (18). This
number is much smaller than the number found for chains
where the paths are correlated.

Conclusions. We proposed partial minima as a pro-
tocol for identifying pseudo optimal solutions to multi-
objective optimization problems. Partial minima are de-
fined by a parameter k: a point in d-dimensions that
dominates all other points on at least d − k coordinates
is a partial minimum. As this optimality criterion be-
comes more stringent, partial minima improve in quality
but are less probable. In the extreme case k = d, the
number of partial minima grows logarithmically with the
total number of points.

Remarkably, there is a series of distinct power-law dis-
tributions that characterize the largest coordinates with
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a consequent multiscaling distribution of the moments,
while the rest of the coordinates obey ordinary scaling.
Viewed as quasi-optimal solutions to multi-objective op-
timization problems, partial minima involve a trade-off.
When the optimality criterion is relaxed, these quasi-
optima become more likely, but are more likely to incur
at least one extremely large cost.

Our results hold as long as the set of points are not
correlated, that is, as long as they are drawn from inde-
pendent distributions. These distributions need not be
identical. If the ith coordinate is drawn from the dis-
tribution fi(xi), the transformation xi →

∫ xi

0
dyifi(yi)

and dxi → fi(xi)dxi, maps to a uniform distribution in
the unit hypercube. Correlations present an interesting
challenge and we anticipate serious modifications to the
scaling laws above. For instance, it is simple to show that
the size of the efficient set grows as a power of the num-

ber of points, ∼ N1/2, rather than a logarithm, when the
points are uniformly distributed inside the unit circle. In-
cidentally, this growth is much faster than the N 1/3 for
the corresponding number of points in the convex hull
[20].

Another interesting issue is the crossover from the al-
gebraic decay (2) to the logarithmic growth (18). The
average number of partial minima decreases monotoni-
cally with N when k is small, but is a non-monotonic
function of N when k is large. For example, when d = 4
and k = 3, the average Ad,k peaks at N = 16. It will be
interesting to elucidate how the height and the location
of this peak scales with N .
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